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Abstract. We describe a simple model for symmetry breaking of electronic structure
configurations of one-electron systems. This model involves generalizing the problem toD-
dimensional space and finding the solution atD → ∞, a semiclassical limit which can be
solved exactly. The large-D limit model reduces the problem to a variational calculation which
is equivalent to mean-field theories of critical phenomena in statistical mechanics. We show
that symmetry breaking of electronic structure configurations can be described as standard phase
transitions. Rich phase diagrams with multicritical points are reported for both linear and planar
one-electron systems.

1. Introduction

Large-dimension models and dimensional expansion schemes have proven their efficiency in
dealing with a diverse class of fields ranging from nuclear physics, critical phenomena and
particle physics to atomic and molecular physics [1, 2]. This method involves generalizing
the problem toD-dimensional space and treatingD as a free parameter. This large-D

limit is a semiclassical approximation toD = 3, but distinct from the conventional WKB
approximation [3]. The most important characteristics of the large-D limit are that it is
simple, captures the main physics of the system, is applicable for a wide class of theories
and is analytically solvable. In this paper, the large-D model will be used to describe
symmetry breaking and phase transitions in electronic structure problems. In order to study
critical phenomena and phase transitions one quite often has to rely on solvable models.
For example, the Curie–Weiss Hamiltonian has been used in the magnetic phase transition
theory [4]. This Hamiltonian model has an analytical solution not only for the simplest
ferromagnetic model, but also for more complicated spin interactions such as spin-glasses
and neural networks [5].

Recently [6], we have shown that symmetry breaking of electronic structure
configurations at the large-D limit is completely analogous to the standard phase transitions
and critical phenomena in statistical mechanics [7]. ForN -electron atoms in weak magnetic
and electric fields at the large-D limit, this analogy is shown by allowing the nuclear charge
to play a role analogous to temperature in statistical mechanics [8]. The complete mapping
can be represented with the following analogies:
• nuclear chargeZ ↔ temperatureT ;
• external electric fieldE ↔ ordering fieldh;
• ground-state energyE∞(Z, E)↔ free energyf (T , h);
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Universitaria, 5000 Ćordoba, Argentina.
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• asymmetry parameterη↔ order parameterm;
• stability limit point (Zc, E = 0)↔ critical point (Tc, h = 0).

Using this scheme, we can define the critical exponents(β, α, δ, andγ ) for the symmetry
breaking and phase transitions of electronic structure configurations for atoms.

For the exact solution ofN -electron atoms at the large dimension limit, the symmetry
breaking is shown to be a first-order phase transition. For the special case of two-electron
atoms, the first-order transition shows a triple point where three phases with different
symmetry exist. Treatment of the Hartree–Fock solution reveals a different kind of symmetry
breaking where a second-order phase transition exists forN = 2. The Hartree–Fock two
electron atoms in a weak external electric field exhibit a critical point with mean field critical
exponents (β = 1

2, α = 0dis, δ = 3, andγ = 1) [8].
Symmetry breaking of the molecular electronic structure configurations at the large

dimension limit show similar phase transitions. For the hydrogen molecular ion the analogy
to standard phase transitions was shown by allowing the inverse internuclear distance to
play a role analogous to temperature in statistical mechanics. As for theN -electron atoms,
to calculate the critical exponents we performed the following mapping [6]:
• inverse nuclear distance1

R
↔ temperatureT ;

• difference between the nuclear charges1↔ ordering fieldh;
• ground-state energyE∞(R,1)↔ free energyf (T , h);
• asymmetry parameterψ ≡ − ∂E∞(R,1)

∂1
↔ order parameterm ≡ − ∂f (T ,h)

∂h
;

• stability limit point (Rc,1 = 0)↔ critical point (Tc, h = 0).
The hydrogen molecular ion exhibits a critical point with mean field critical exponents

[6]. For the Hartree–Fock hydrogen molecule at the large-D limit [9] symmetry breaking of
the electronic structure configurations was also described as standard phase transitions. The
phase diagram in the internuclear distance-nuclear charge plane shows three different stable
phases corresponding to different electronic structure configurations. This phase diagram
was characterized by a bicritical point where the two continuous phase transition lines join
a first-order transition line.

In this paper, we present mean field phase diagrams for electronic configuration of
general one-electron molecules. In section 2, we present details of the large-D model for
generalN -Coulomb centre problems. In section 3 we show that symmetry breaking of
the electronic structure configurations for linear molecules leads to rich phase diagrams.
Detailed calculations are presented forH+2 andH++3 molecules. In section 4, symmetry
breaking and phase transitions are generalized for one-electron planar molecules, detailed
calculations are given for theH++3 equilateral molecule and for the one-electron four atom
molecule.

2. LargeD-model

The Born–Oppenheimer approximation is used to separate the electronic and nuclear
motions. The electronic energy is then parametrically dependent upon the internuclear
distances. TheD-dimensional electronic Hamiltonian for one-electron molecules is given
by

HD = − 1
2∇2

D + V (x) (1)

wherex = (x1, x2, . . . , xD), andV (x) is theN -Coulomb centres potential

V (x) = −
N∑
i=1

Zi

|xi − x| (2)
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whereZi andxi are the charge and the position of theith nucleus. In the Born–Oppenheimer
approximation, the positions of the nuclei are fixed at certain points in space. These points
define a subspace of dimensiond 6 N . The Coulomb potential of equation (2) can be
written as

V (x) = V (x1, . . . , xd, ρ) (3)

where(x1, . . . , xd) are the coordinates of thed-dimensional space defined by the positions
of theN -nuclei andρ is the distance of the electron to this hyperplane,ρ2 = x2

d+1+· · ·+x2
D.

In these hypercylindric coordinates, the Laplacian operator is given by

∇2 =
d∑
i=1

∂2

∂x2
i

+ 1

ρD−d−1

∂

∂ρ

(
ρD−d−1 ∂

∂ρ

)
− L

2
D−d−1

ρ2
(4)

whereL2
k is the total squared angular momentum operator in a(k + 1)-dimensional space.

The Schr̈odinger equation is separable by writing the wavefunction as

9(x) = ψ(x1, . . . , xd, ρ)YD−d−1(�) (5)

where YD−d−1(�) is the hyperspherical harmonic, which is an eigenfunction of the
generalized angular momentum operator [10]

L2
D−d−1YD−d−1(�) = 3YD−d−1(�) (6)

andψ obeys the equation{
− 1

2

[ d∑
i=1

∂2

∂x2
i

+ 1

ρD−d−1

∂

∂ρ

(
ρD−d−1 ∂

∂ρ

)]
+ 3

ρ2
+ V

}
ψ = Eψ. (7)

By incorporating the square root of the Jacobian into the wavefunction via

ψ(x1, . . . , xd, ρ) = ρ−(D−d−1)/28(x1, . . . , xd, ρ). (8)

Equation (7) can be transformed to a simpler form where the centrifugal energy separates
out from other kinetic terms. The resulting Hamiltonian has the following form{
−1

2

[
d∑
i=1

∂2

∂x2
i

+ ∂2

∂ρ2
− (D − d − 1)(D − d − 3)

4ρ2

]
+ 3

ρ2
+ V

}
8 = E8. (9)

For the ground-state, the eigenvalue of the angular momentum is equal to zero for all
dimensions, therefore equation (9) reduces to{
− 1

2

[ d∑
i=1

∂2

∂x2
i

+ ∂2

∂ρ2
− (D − d − 1)(D − d − 3)

4ρ2

]
+ V

}
80 = E080. (10)

The centrifugal term contains a quadratic dependence on the dimension and thus
becomes singular in the limitD → ∞. The dimension dependence can be removed by
scaling all the coordinates by a factor with quadratic dependence on dimension. The scaling
factor is chosen to give a finite energy in the limitD → ∞ while reducing to unity for
D = 3. Therefore, distances are given in units ofκ2 Bohr radii and 1/κ2 Hartree for the
energy, withκ = (D − 1)/2. The rescaled Schrödinger equation takes the form{
− 1

2κ2

[ d∑
i=1

∂2

∂x2
i

+ ∂2

∂ρ2
− (D − d − 1)(D − d − 3)

ρ2

]
+ V

}
80 = E080. (11)
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At the D → ∞ limit, the kinetic terms vanish and the wavefunction becomes aδ-
function. The effective Hamiltonian at this limit is given by

H∞ = 1

2ρ2
+ V (x1, . . . , xd, ρ). (12)

Hence forD→∞, the electronic structure becomes rigid and the ground-state energy
is found simply from the global minimum of the effective Hamiltonian

E∞({Zi}, {xi}) = min
{x1,...,xd ,ρ}

H∞({Zi}, {xi}; x1, . . . , xd, ρ). (13)

In this paper, we would like to draw the analogy between the study of symmetry
breaking and stability of the solutions of the variational equations (13) for the ground-
state energy of one-electron molecules with the traditional variational mean-field theory
of critical phenomena. This analogy was established between the ground-state energyE∞
and the variational mean-field free energy for the two-Coulomb centre problems [6], the
N -electron atoms [8] and the hydrogen molecule [9]. For these systems, the internuclear
distance and the nuclear charges play an analogous role to thermodynamic fields in statistical
mechanics. Symmetry breaking of the electronic structure configurations of the ground-state
energy as a function of these fields can be interpreted as phase transitions. In this work, we
will study phase transitions for both linear and planar one-electron molecules.

3. Linear molecules

The simplest one-electron system is thed = 0 case, which corresponds to the hydrogen-like
atoms. The large-D Hamiltonian for one electron in the field of a nuclear chargeZ located
at the origin is given by

H∞ = 1

2ρ2
− Z
ρ
. (14)

The minimum of this effective Hamiltonian is located atρmin = 1
Z

, and the energy is simply
given byE∞ = − 1

2Z
2 [11].

This simple example has a trivial phase diagram because there is no true free parameter
in the effective Hamiltonian. By scaling the distance with the nuclear charge the rescaled
Hamiltonian has the nuclear charge as a global scaling factor [3].

In order to have nontrivial phase diagrams, we must study Hamiltonians with
free parameters, where symmetry breaking configurations are the global minimum of
equation (13) for some values of the free parameters.

The first nontrivial examples are systems in one dimension,d = 1. In particular, we
will examine the two and three-atom collinear molecules. The general effective Hamiltonian
for three-Coulomb centre problems can be written as

H∞ = 1

2ρ2
− Za
ra
− Zb
rb
− Zc
rc

(15)

where the nuclei of chargesZa,Zb and Zc are located on thex-axis atxa,xb and xc
respectively and the electron-nuclear distances are given by,ra, rb andrc.

In statistical mechanics models it is necessary to put the field conjugated to the order
parameter equal to zero in order to examine symmetry breaking and phase transitions. A
non-zero field will destroy the phase transition. In our previous study of symmetry breaking
of electronic structure configurations we have shown [6] that it is necessary to identify an
order parameter and an effective conjugated field that must be equal to zero in order to get
phase transitions.
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For linear molecules, the symmetric configuration corresponds to the one where the
electron coordinates(x1, . . . , xd) corresponds to the geometric centre of the molecule. This
configuration is equivalent to the high temperature phase in the traditional phase transition
theory. The nonsymmetric phases correspond to configurations where the electron is located
out of the geometric centre of the molecule. This simple picture gives us a clear way to
choose an order parameter. Taking the geometric centre as the centre of coordinates, the
order parameter can be defined as the (normalized) coordinates of the electron in thed-
dimensional hyperplaneE9 ∝ (x1, . . . , xd). The vectorial character of the order parameter
is necessary in order to identify the different (equivalent) nonsymmetric phases. In [6] we
have shown that the asymmetry in the nuclear charges for the two-atom molecules plays an
equivalent role of the external field in magnetic phase transitions. The same condition is
valid for the linear three-atom molecules, therefore we will take a symmetric configuration of
nuclear charges located on thex-axis atx = −a, x = 0 andx = a respectively. Because the
Hamiltonian scales with the nuclear charge, we can arbitrarily choose one nuclear charge
to be equal to one. Then for nuclear chargesZa = Zc = 1 andZb = Z the effective
Hamiltonian is given by

H∞ = 1

2ρ2
− 1

r−
− Z
r
− 1

r+
(16)

wherer2 = x2+ ρ2 andr2
± = (x ∓ a)2+ ρ2.

For this case, the variational equations, equation (13), takes the simple form

∂H∞
∂x
= x + a

r3−
+ Zx
r3
+ x − a

r3+
= 0 (17)

∂H∞
∂ρ
= − 1

ρ3
+ ρ

[
1

r3−
+ Z

r3
+ 1

r3+

]
= 0. (18)

In the following subsections 3.1 and 3.2 we will study symmetry breaking and phase
transitions for the limiting caseZ = 0, which corresponds to theH+2 molecule and the
three-atom collinear molecule,H++3 .

3.1.H+2 molecule

ForZ = 0, the Hamiltonian in equation (16) reduces to the homonuclear two-atom molecule
studied in [6]. In this case, equations (17) and (18) take the form

∂H∞
∂x
= x + a

r3−
+ x − a

r3+
= 0 (19)

∂H∞
∂ρ
= − 1

ρ3
+ ρ

[
1

r3−
+ 1

r3+

]
= 0. (20)

The symmetric electronic configuration is given by the solution of equations (19) and
(20) with x = 0. In this case, from equation (20) we obtain thatρs is a positive root of the
polynomial

4ρ8− (ρ2+ a2)3 = 0. (21)

The stability limit of this solution is given by the value of the internuclear distance 2a

where the smallest eigenvalue of the Hessian matrix is equal to zero. This condition yields
(see appendix)

ac = 3
√

3

8
ρc = 3

4

√
3

2
. (22)
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We have found numerically that there is only one stable solution in the regiona > ac
for the nonsymmetric solutions withx 6= 0. This point(ac, ρc) has the characteristics of
a critical point. By allowing the internuclear distance to play the role of temperature, it
is possible to define the critical exponentsα andβ. In this case, the exponents have the
classical values,α = 0dis andβ = 1

2. For heteronuclear diatomic molecules, the difference
between the nuclear charges plays the same role of an external magnetic field as in the
Curie–Weiss mean field theory of magnetism. Then, it is possible to define the ‘magnetic’
critical exponentsγ andδ, which also in this case have mean field valuesγ = 1 andδ = 3
[6].

3.2.H++3 molecule

We next consider the one-electron three collinear hydrogen atoms with the Hamiltonian
given by equation (16). Equation (17) has a symmetric solution withx = 0, and in this
case equation (18) gives the following equation forρs

1

ρ4
s

= 2

(a2+ ρ2
s )

3/2
+ Z

ρ3
s

. (23)

This equation has two simple particular limits. The hydrogen-like atom limit, with
nuclear charge equal to 2+ Z for a→ 0. At this limit, the solution is stable for all values
of Z. The other limit,Z→ 0, corresponds to theH+2 molecule. As we have shown in the

previous subsection, the solution at this limit is stable fora 6 3
√

3
8. In order to obtain the

stability lines as a function ofZ and a for this system, we have to calculate the Hessian
matrix. For this collinear three atoms system, the off-diagonal terms∂2H∞/∂x∂ρ|sym are
equal to zero (see appendix) and the eigenvalues are given by

λ1 = ∂2H∞
∂x2

∣∣∣∣
sym

= 2

(a2+ ρ2
s )

3/2

(
1− 3a2

a2+ ρ2
s

)
+ Z

ρ3
s

(24)

λ2 = ∂2H∞
∂ρ2

s

∣∣∣∣
sym

= 3− 2Zρs
ρ4
s

+ 2

(a2+ ρ2
s )

3/2

(
1− 3ρ2

s

a2+ ρ2
s

)
. (25)

We have found numerically thatλ2 > 0 in the region whereλ1 6 0. Therefore, the
stability line of the symmetric phase is given by the conditionλ1(a, Z) = 0.

The analysis of nonsymmetric solutions shows that the stability lines of both symmetric
and nonsymmetric configurations are coincident for small values ofZ. The transition
between different electronic configurations has the characteristic of a continuous phase
transition. However, there exists a point in the(a, Z) plane where the stability lines
split leading to a coexistence zone where both solutions are minimum of the Hamiltonian
equation (16). As in the usual variational mean field calculations, a Maxwell construction
gives the phase-order transition line. In our case, the first-order phase transition lineZ1(a)

is given by the line where the global minimum of the energy degenerates

H∞(Z1(a), a; x = 0, ρs) = H∞(Z1(a), a; xns, ρns). (26)

The special point where the first-order line meets with the second-order line has
particular critical properties, and is called a tricritical point [12]. This point was calculated as
the point where the symmetric solution degenerates, with(atc ' 0.967 26, Ztc ' 0.326 07).
The phase diagram including stability lines is shown in figure 1. The first-order phase
transition line is asymptotic to the lineZ = 1 for a→∞, because in this limit the electron
always remains close to the central nucleus ifZ > 1.
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Figure 1. Phase diagram with a tricritical point for the linear three-atoms molecule in the(a, Z)

plane. The full lines represent second-order phase transitions while the chain line is a first-order
phase transition line. The broken lines are the stability limits of the phases. The region between
these lines is the coexistence zone.

4. Planar molecules

In this section, we will studyN -atom molecules with nuclear charges localized in a plane.
As discussed above, we will be looking for symmetric atomic configurations, but now in a
two-dimensional array. The molecules will be defined as fixed charges on the vertices of
a regularN -polygon, and the electronic configuration will be studied as a function of the
nuclear charges and the radii of the polygon. For some values ofN a symmetric solution
exists even for nonregular polygons (for example a symmetric solution exists for all even
values ofN and different distances to the geometric centre for even and odd nuclei).

It is convenient to write the Hamiltonian equation (12) for aN -atom regular molecule
in the following form

H∞ = 1

2ρ2
−

N−1∑
j=0

Zj

rj
(27)

where r2
j = (x − xj )2 + (y − yj )2 + ρ2 is the square distance of the electron to thej th

nucleus. The subindexj takes the values from zero toN − 1 in order to write a simple
expression for the nuclear position

xj = aRe(Uj ) yj = a Im(Uj ) j = 0, . . . , N − 1 (28)

wherea is the radius of the polygon andUj = exp(2π ij/N) are theN roots of the unity.
The variational equations (13) for this problem are

∂H∞
∂x
=

N−1∑
j=0

(x − xj )Zj
r3
j

= 0

∂H∞
∂y
=

N−1∑
j=0

(y − yj )Zj
r3
j

= 0

∂H∞
∂ρ
= − 1

ρ3
+ ρ

N−1∑
j=0

Zj

r3
j

= 0.

(29)



1490 P Serra and S Kais

We are interested in nuclear charge configurations that give a symmetric solution
xs = 0, ys = 0 for equations (29). This symmetric configuration corresponds to the electron
located at the centre of the regular polygon withr2

j = a2 + ρ2
s ∀j . For this phase, the

variational equations (29) take the simple form

N−1∑
j=0

xjZj = 0

N−1∑
j=0

yjZj = 0

− 1

ρ3
+ ρ

(ρ2+ a2)3/2

N−1∑
j=0

Zj = 0.

(30)

Because of the well known property of the roots of the unity
∑N−1
j=0 Uj = 0, the

homonuclear molecules always give a symmetrical solution. In order to obtain heteronuclear
molecules with symmetric electronic configuration, we note that for theN roots of the
equationUN = −1 also holds

∑N−1
j=0 Uj = 0. Then an alternating charge configuration

Z2k = Zeven;Z2k+1 = Zodd will have a symmetric solution ifN = 4k, with k a positive
integer. It is interesting to note that the scaling freedom implies that we can choose an
irregular polygon with two different distances of the nuclear charges to the centre, one
for the ‘odd’ and another one for the ‘even’ atoms. In the following subsections, we will
present the solutions for two systems; the equilateral homonuclearH++3 molecule, and the
four-atom molecule, which is the smallest molecule withN = 4k.

4.1.H++3 equilateral molecule

TheH++3 equilateral molecule has a symmetric configuration with the electron coordinates
(x = 0, y = 0, ρs) only for the homonuclear caseZ = 1. From equations (13),ρs is a
positive root of the polynomial

9ρ8− ( 4
3a

2+ ρ2)3 = 0. (31)

By studying the eigenvalues of the Hessian matrix (see appendix) for this solution, we
have found that it is stable fora 6 as = 3/

√
2. A nonsymmetric solution with the electron

near one of the nuclei exist fora > 1. Therefore it defines a coexistence zone where both
configurations correspond to the minimum of the energy. The equal energy condition gives
for the first-order phase transition point the valuea1 ' 1.09.

4.2. Four-atom molecules

For the four-atom molecules, the symmetry breaking phenomenon occurs if the nuclei are
fixed on the vertices of a square with two alternating charges. The Hamiltonian in this case
can be written as

H∞ = 1

2ρ2
− 1

r1
− 1

r2
− Z

(
1

r3
+ 1

r4

)
(32)

where the electron-nuclear distances are given by

r2
1 = (x + a)2+ y2+ ρ2 r2

2 = (x − a)2+ y2+ ρ2

r2
3 = x2+ (y + a)2+ ρ2 r2

4 = x2+ (y − a)2+ ρ2.
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The variational equations (13) reduces to
∂H∞
∂x
= x + a

r3
1

+ x − a
r3

2

+ Zx
(

1

r3
3

+ 1

r3
4

)
= 0 (33)

∂H∞
∂y
= y

(
1

r3
1

+ 1

r3
2

)
+ Z(y + a)

r3
3

+ Z(y − a)
r3

4

= 0 (34)

∂H∞
∂ρ
= − 1

ρ3
+ ρ

[
1

r3
1

+ 1

r3
2

+ Z

r3
3

+ Z

r3
4

]
= 0 (35)

as in the previous cases, the symmetric solutionx = 0, y = 0 givesρs as a positive root of
the polynomial

4(1+ Z)2ρ8− (ρ2+ a2)3 = 0. (36)

Since the off-diagonal terms of the Hessian matrix are equal to zero, the eigenvalues of
the Hessian matrix are given by

λ1 = ∂2H∞
∂x2

∣∣∣∣
sym

= 2

r3
a

(
1+ Z − 3a2

r2
a

)
(37)

λ2 = ∂2H∞
∂y2

∣∣∣∣
sym

= 2

r3
a

(
1+ Z − 3Za2

r2
a

)
(38)

λ3 = ∂2H∞
∂ρ2

s

∣∣∣∣
sym

= 3

ρ4
s

+ 2(1+ Z)
r3
a

(
1− 3ρ2

s

r2
a

)
(39)

wherer2
a = a2+ ρ2

s .
The stability limit of the symmetrical solution is given by

λ1 = 0⇒ a1(Z) = 3

2(2− Z)2
√

3

1+ Z (40)

λ2 = 0⇒ a2(Z) = 3

2(2Z + 1)2

√
3Z3

1+ Z (41)

andλ3 > 0 in the region whereλ1 > 0; λ2 > 0.
We have found two different nonsymmetric solutions for equations (33)–(35), related by

the symmetry of the system. A nonsymmetric phaseA, given byxA 6= 0, yA = 0, ρA 6= 0
and a nonsymmetric phaseB, given byxB = 0, yB 6= 0 andρB 6= 0.

For the phaseA, yA = 0 is a trivial solution of equation (34), and we have to solve
equations (33)–(35) forxA and ρA. Because∂2H∞/∂y∂x = ∂2H∞/∂y∂ρ = 0 for this
electronic configuration, the Hessian matrix reduces to 1× 1 and 2× 2 matrices. By
studying these eigenvalues, we have found that there is a tricritical point located on the line
a1(Z) where the stability lines of the symmetric and nonsymmetricA phases split.

Because of the symmetry of the system, studying the nonsymmetric phaseB is
essentially the same as phaseA. We have to use the transformationZ → 1/Z; a → Za

to go from one nonsymmetric phase to the other. Therefore, the symmetric–nonsymmetric
phaseB transition line also presents a tricritical point. Both first-order phase lines meet at
the triple pointatp ' 1.53, Ztp = 1. TheZ = 1 line, where the four nuclear charges have
the same values, is a first-order line between both non symmetrical phases fora > atp. The
numerical values of the tricritical points are

aAtc ' 1.0701 ZAtc ' .6193

aBtc ' 0.6627 ZBtc ' 1.6147.

The phase diagram in the(a, Z) plane is shown in figure 2.
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Figure 2. Phase diagram with triple and tricritical points for the four-atoms molecule in the
(a, Z) plane. The full lines represent second-order phase transitions while the broken lines are
first-order phase transition lines.

5. Conclusions

In this paper, we show that the large-D model for electronic structure problems is simple,
exactly solvable and useful in describing symmetry breaking and phase transitions for
electronic systems. This model can be improved upon by a systematic expansion in 1/D. We
have examined the analogy that recently has been established between mean-field theory of
phase transitions and symmetry breaking of electronic structure configurations at the large-
D limit. We have demonstrated the existence of critical points in both linear and planar
molecules. Rich mean-field phase diagrams displaying multicritical points were obtained
with a two-parameter ‘free-energy’ (ground-state) for three and four atom molecules. Work
is underway to generalize this study to include the infinite linear chain of atoms and two-
and three-dimensional lattices [13].

Appendix

In this appendix we will give the Hessian matrix for an arbitrary arrangement of the nuclear
charges ford = 2 which will include all the cases that have been solved in this work.

For d = 2, the Hamiltonian forN -Coulomb centre problem atD→∞ is given by

H∞ = 1

2ρ2
−

N∑
j=1

Zj

|xj − x|

wherexj = (xj , yj ); j = 1, · · · , N are the positions of the nuclei in the(x, y) plane. The
matrix elements of the Hessian are given by

hα,β = ∂2H∞
∂xα∂xβ

∣∣∣∣
solution

.

Here, xα, xβ, α, β = 1, 2, 3 are the coordinates of the electronx1 = x, x2 = y and
x3 = ρ. The electron coordinates must be evaluated in a particular solution of the variational
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equations (13). The second derivatives of the Hamiltonian are

∂2H∞
∂x2

=
m∑
j=1

Zj

r3
j

(
1− 3(x − xj )2

r2
j

)
∂2H∞
∂y2

=
m∑
j=1

Zj

r3
j

(
1− 3(y − yj )2

r2
j

)
∂2H∞
∂ρ2

= 3

ρ4
+

m∑
j=1

Zj

r3
j

(
1− 3ρ2

r2
j

)
∂2H∞
∂x∂y

= −3
m∑
j=1

(x − xj )(y − yj )Zj
r5
j

∂2H∞
∂x∂ρ

= −3ρ
m∑
j=1

(x − xj )Zj
r5
j

∂2H∞
∂y∂ρ

= −3ρ
m∑
j=1

(y − yj )Zj
r5
j

(42)

whererj = |x− xj |.
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